Design Considerations for a FCC Muon System at Vs = 100 TeV

Frank E. Taylor

MIT

August 27, 2014 Date: 2012-09-04 Date: 2012-09-04 Output Next steps in the Energy Frontier – Hadron Colliders

ATLAS $M_{4\mu}$ = 123 GeV

EXPERIMENT

Muon: <mark>blue</mark> Cells: Tiles, <mark>EMC</mark>

Rphi < 1 cm

Run Number: 209736 Event Number: 135745044

Muons – Window to Physics

ATLAS

CMS

Parts of a Muon System

- Central Tracker with Vertex Determination
- EM/Hadron Calorimeter & Muon Filter
- Magnetic Field(s)
- Trigger and Tracking Chamber System
- DAQ & Environmental Monitoring

Approach to Design

- Design of muon system concomitant with full detector integration
 - The muon system design requirements influence most parts of detector design
 - Magnet System: Configuration (Solenoid or Toroid), Size and Cost
 - Calorimeter/muon filter thickness required
 - Shielding to control backgrounds
- Develop scaling rules using LHC & SSC detectors as benchmarks
 - Design requirements for η and pT range
 - Performance requirements for muon triggering and tracking technologies
 - Alignment requirements
 - Cost of muon system
 - R&D program for muon chamber technology choice

CMS Muon System

ATLAS Muon System

$\Delta pT/pT < 10\%$ up to 1 TeV

GEM-SSC Inspired Design – Option 1A

• GEM @ SSC vs = 40 TeV B = 0.8 T, W = 2.5 GJ

Forward Fe B-field shaper for more bending at high $|\eta|$

Z (m)

FIG. 3-5. Contours of constant B labeled in gauss

Assume performance adequate

Designer's Tool Kit - Resolution

- Resolution for momentum p
 - Momentum dispersion in B-field
 - Field Strength B
 - Length of measured track L
 - Chamber spatial resolution
 - Constant a
 - Resolution of chamber $\sigma(X_{ch})$
 - Multiple scattering in system
 - Constant α
 - Thickness of middle layer X_m
 - Energy loss fluctuations
 - Constant b = 15%
 - $dE/dx \approx 1.6E^{0.0572} + 0.0034E^{1.0897}$
 - Thickness of dead mat'l X

ATLAS Design vs. Toy Model ($\eta \sim 0$)

- MS in middle station
- Chamber alignment + resolution
- Energy loss compensation

Standard ATLAS			
B (T)	L (m)	BL ² (Tm ²)	BL (Tm)
0.50	6.00	18.00	3.00
X _{Middle} /X0	Station Resol'n (μ m)	Alignment (µm)	SR √1.5 (μm)
34.0%	50.00	20.00	65.95
Calorimeter (n λ)	λ (g/cm ²)	g/cm ²	δ (ΔΕ)/ΔΕ
12.50	132.00	1650.00	15.0%

Design Criterion

- LHC @ √s = 14 TeV
 - $|\eta|$ range < 2.7
 - Momentum Resolution $\sigma(pT)/pT \sim 10\%$ @ pT = 1 TeV
 - Beam Cross Tagging $\tau \ll$ 25 ns
 - Trigger 1 MU pT > 20 GeV/c, 2 MU pT > 10 GeV/c, 3 MU pT > 6 GeV/c
 - Highest detector hit rate ~ 15 kHz/cm²
- Scaling factors
 - − √s ratio ~ 7

 $|BL^2|_{100 \text{ TeV}} \sim 7 |BL^2|_{14 \text{ TeV}}$

- $|y_{max}|$ ratio ~ $\ln[(\sqrt{s}=100)/M_p]/[(\sqrt{s}=14)/M_p] \sim 11.5/9.5 \sim 1.2$
- FCC @ √s = 100 TeV
 - $|\eta| \operatorname{range} < 2.7 \text{ x } y_{\max}(100) / y_{\max}(14) \sim 3.2$
 - Momentum resolution $\sigma(pT)/pT \sim 10\%$ @ pT = 7 TeV/c
 - Beam Cross Tagging $\tau \ll$ 25 ns
 - Trigger 1 MU pT > 20 GeV/c, 2 MU pT > 10 GeV/c, 3 MU etc.
 - With BL² ~ 7X could raise threshold to higher value but threshold will be determined by bkg. suppression, trigger bandwidth & physics
 - Highest detector hit rate ~ 30 kHz/cm²

Calorimeter & Muon Filter

Calorimeter thickness for 100 TeV

Compare E = 50 TeV vs. E = 7 TeV

Womersley et. al λ (99%) ~ 0.64+1.063 ln(E(GeV))

Ratio of thickness for same shower containment (99%): $\lambda(50 \text{ TeV})/\lambda(7 \text{ TeV}) \sim 1.2$

1 HC 11 to 14 λ -> FCC 13 to 17 λ

Highly segmented calorimeter useful for isolation cuts around muon in $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$

dE/dx correction & Co-traveling BKG

Achieving Goal Performance ($\eta \sim 0$)

Option 3			
B (T)	L (m)	BL ² (Tm ²)	BL (Tm)
1.70	8.70	128.67	14.79
X _{Middle} /X0	Station Resol'n (μ m)	Alignment (µm)	SR √1.5 (µm)
34.0%	50.00	20.00	65.95
Calorimeter (n_{λ})	λ (g/cm²)	g/cm ²	δ(<u>Δ</u> Ε)/ΔΕ
15.00	132.00	1980.00	15.0%

• Increase BL² by 7/LHC

 Increase calorimeter thickness by 1.2 to have same containment

> s ~ 690 μm @ pT = 7 TeV/c In order to meet design criterion must measure this to 10%

B-Field Configuration*

- Option 1: Single 6T Solenoid Design CMS Inspired
 - Add 2 endcap dipoles and Fe return Yoke
- Option 1A: Single Solenoid Design GEM Inspired
 - Add 2 Fe field shaper cones in endcap
- Option 2: Twin Solenoid MRI Inspired
 - 6 T inner solenoid, 3T shielding coil, 2 endcap 2T dipoles
- Option 3: Central 3.5 T solenoid and External Toroid ATLAS Inspired
 - Add 2 internal 2T dipoles

*Follow Herman ten Kate and Jeroen van Nugteren, CERN, 14 February 2014 Following discussions with D. Fournier, F. Gianotti, A. Henriques, L. Pontecorvo <u>https://indico.cern.ch/event/282344/session/13/contribution/87/material/slides/0.pdf</u>

All options make an effort to enhance high |η| performance

Option 1: Solenoid-Yoke + Dipoles (CMS inspired)

- Stored magnetic energy 54 GJ
- Dipole or radial field in high rapidity region for enhanced bending power
- Iron Flux return makes design massive
 - mass ≈120 k tons (>200 M€ raw material) in comparison to CMS 12.5 k tons
 - Large mechanical engineering challenge design impractical

Option2: Double Solenoid Design – MRI Inspired

- Magnetic circuit Φ_{outer} = Φ_{inner}
- Low mass construction
- Stored energy W = 65 GJ

P > 12 GeV/c to get out of inner solenoid

Option 3: Solenoid + Toroids + Dipoles – ATLAS Inspired

- Air core Barrel Toroid with 7 x muon bending power BL².
- 2 End Cap Toroids to cover medium angle forward direction.
- 2 Dipoles to cover low-angle forward direction.
- Overall dimensions: 30 m diameter x 51 m length (36,000 m³).

W=55 GJ

Cost of Magnet System

- M. A. Green & B. P. Strauss
 - IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 18, NO. 2, JUNE 2008

Appraisal of Designs

- GEM-SSC Design: Single solenoid with field shaper, W = 9.9 GJ
 - Least stored energy but may fall short in high $|\eta|$ performance limited by iron saturation
 - Muon system and calorimeter all within solenoid
 - Laissez-faire Flux return
- Option 1: Single solenoid with Fe Yoke + EC, W = 54 GJ
 - Expensive and heavy construction \approx disfavored
- Option 2: Double Solenoid + EC, W = 65 GJ
 - Elegant and lighter design
 - Worry about getting enough bending at high $|\eta|$
- Option 3: Central solenoid and toroids + EC, W = 55 GJ
 - Complicated magnet designs but good performance at high $|\eta|$ and large BL^2

(Bending power/Cost) favors smaller B

R&D Program – Time Frame

New LHC / HL-LHC Plan

- Mandate is to fully exploit LHC < 2035
- FCC TDR around 2030 -> 16 years of R&D for chamber technology development
- Phase I and Phase II LHC Upgrades will provide important R&D lessons

Chamber Technologies

- Choice should be 'conservative' with test experience in a hadron collider environment
 - Will be a result of a long period of development
 - Drift-based technologies relatively inexpensive way of covering large areas with precision – hence may be suitable for barrel region
 - Technology with highly-segmented readout would be more suitable for endcap where bkg. expected to be higher
 - Should strive for at least 100 μm single layer resolution and expect station resolution to improve by ~ 1/VN_{layers}
 - Integrated design to provide both the 1st & 2nd coordinates
- R&D advantage to use the <u>same</u> technology for both triggering and tracking in both barrel & endcap
 - However technology choice tends to become highly political and 'Balkan' with individual factions offering their technology for a specific region backed up by their funding agency
 - But may not be optimal in terms of performance

Backgrounds of neutrons & γs

- Most of backgrounds originate from energy deposited in detector by p-p collisions ~ ½ comes from beam line small θ
 - Preliminary ATLAS shielding study predicts a 20% increase from Vs = 8TeV to Vs = 14 TeV per p-p collision
 - Assuming scaling by Vs would predict ~ 10X bkg. of 14 TeV at 100 TeV

Likely an issue and has to be considered carefully when integrated detector, beam pipe and shielding become realistic.

Background Sensitivity

 Important that tracking/triggering technologies have low sensitivity to background neutrons and gammas

 Requires Low Z and minimum material (ATLAS BKG Study)

Likely Design Principles

- Technology will be light weight, low Z and non-hydrogenous material and be inexpensive/m²
 - Based on gas amplifier with gain ~ 10^4
- Large areas will have to be covered
 - ATLAS 5,800 m² Tracking, 9,300 m²
 Triggering
 - FCC 100 TeV would be larger by $\sqrt{7}$
- Precision chamber alignment system required ~ 20 μm
- Station Resolution ~ $100/\sqrt{4} = 50 \ \mu m$ position
- Local vector determination $\delta \theta \sim 0.5$ mrad
- Front-end ASICS will have more functionality
 - Multiple inputs, ASD, ADC, data flow through fiber optic links
 - High density 3D/2.5 D interconnects
- Have 16 years for R&D

Gianluigi De Geronimo, TIPP 2014

Consideration-I

- Lorentz angle
 - Deployment in large B-field will result in a large L-angle depending on gas and E-operating point
 - Drift vector **V**_D rotates away from **E**
 - Naive configuration is to make the wires || to B but serious consideration of effect needed for any gas technology in the large B-field options

Example of compensation by using backto-back HV planes in a Micromega

Consideration-II

• dE/dx

- Larger dynamic range needs to be accommodated as muon ionizes gas in chamber
- Roughly a factor of 25 N_T = 94 x 25 = 2,350 ion pairs/cm
- Frontend electronics has to have a larger dynamic range
- Chamber HV system has to be 'stiff' enough not to saturate
- Perhaps operate at ~ 10^3 gain
- Effect needs a more definitive calculation with realistic gas mixtures and chamber design

dE/dx in gaseous Argon estimated by scaling critical energy to 565 GeV

Drift Based Technologies

- Such as CMS barrel deployment
 - Inexpensive way to cover large area with smaller channel count watch L-angle

Charge Interpolation Technologies

FE ASIC (VMM) has high functionality being developed for ATLAS Phase I

- Charge Measurement: 8-bit resolution
 Negative Input
- Micro-TPC mode for inclined tracks 2 ns time resolution
- Large strip capacitance ~ 200 pF
- Trigger primitive: Mmegas Address of first arrival above threshold in a given IC and Bunch crossing
- Shaping time: 50-100 ns

- Charge Interpolation: 8-bit resolution
- Positive Input
- Trigger prompt (at BC clock)) 6-bit amplitude from each strip

ATLAS sTGC

CATHODESTRIP

- Large strip capacitance ~ 200 pF
- Shaping time: 25 ns
- V. Polychronakos, US Workshop on IC Design for High Energy Physics HEPIC2013

Triggering

- Large B fields will make a natural filter blocking low p from muon system
 - For double solenoid design (Option 2) p > 13 GeV/c to get out of inner solenoid
 - Level 1 Threshold value determined by trigger bandwidth
- Design the trigger to measure the actual 3-station track-sagitta
 - In ATLAS, due to cost control, the first layer of barrel was not instrumented with RPC trigger planes
 - Improvements to the barrel trigger using the MDTs are being studied for Phase II
 - And the first layer of the endcap was only minimally instrumented
 - The endcap trigger is being upgraded in Phase I with New Small Wheel
- Ideal would be to have a dual function technology that does both triggering and tracking
 - Fast enough to label beam crossing $\tau \sim$ few ns
 - Develop FE ASIC to generate trigger signal as well as precision hit signal for tracking
 - Fiber optics, fast communications, multiplexing will make more complicated Level 1 triggering feasible
 STGC, MM, CSC, RPC
 - Build sufficient trigger latency to form first Level trigger easily
 - Latency 10 to 20 μ s (ATLAS presently has 2.5 μ s but will be extended to ~ 6 μ s in Phase II)

Table of Muon Technologies

Muon Chamber Technology	Deployment	Comments
Drift Tubes with field shaper electrodes	Barrel Tracking & Triggering Cell resol'n (rφ) < 250 μm	CMS
MDT (Monitored Drift Tubes) 3 cm dia.	Barrel Tracking Tube resol'n (r θ) ~ 150 μ m resolution	ATLAS
Small Diameter MDT 1.5 cm dia.	Tracking in some special regions of barrel	ATLAS
Cathode Strip Chambers (CSC)	Endcaps Tracking & CMS Triggering ATLAS: η strip pitch 5.5 mm, ϕ strip pitch 13 - 21 mm	CMS and ATLAS (2< η <2.7)
Micromegas	Endcaps Tracking & Triggering Readout pitch ~ 0.4 mm	ATLAS Phase I Upgrade New Small Whee
Thin Gap Chambers (TGC)	Endcaps Triggering & Tracking 2nd coordinate	ATLAS 1st and 2nd stations Endcap
Small-strip Thin Gap Chambers (sTGC)	Endcaps Triggering & Tracking Fast enough for BC tagging 95% τ < 25 ns; 3 mm strip-pitch	ATLAS Phase I Upgrade New Small Whee
Resistive Plate Chambers (RPC)	Barrel and Endcaps Triggering Fast $\tau \sim 3$ ns ATLAS: η strip pitch ~ 30 mm, ϕ strip pitch ~ 30 mm	ATLAS and CMS
Low Resistivity RPC	Higher rate capability $10^{10} \Omega$ cm	R&D
Multi-gap Resistive Plate Chamber	Very fast τ ~ 50 ps	ALICE and R&D
GEMs (3 layer)	Endcaps Rate ~ 10^{5} Hz/cm ² Fast τ ~ 4-5 ns	CMS Phase I Test & Phase II

John Sealy Townsend Circa 1900

Discussion & Summary

- Cost of B-field is likely quite high but of order of Vs ratio 7
 - Follow SMES development in power industry
 - SMES = Superconducting Magnetic Energy Storage and note that large SMES favor toroidal geometry
 - Lower B-field options favored (Bending Power/Cost) ~
- Neutron and γ background may be troublesome
 - Crude scaling from 14 TeV to 100 TeV is factor of 10
 - Should be done much more carefully
- Co-traveling EM bkg. around muon track following muon calorimeter/filter may be problematic
 - Design an air gap with B-field sweeping and deploy fine-grained multiple layers for 1st muon station
- Tracking and Triggering chamber technologies will develop over the next ~20 years – especially the readout and DAQ electronics
 - Gas amplifiers likely to provide the foundation operating principle
 - How will they work when $dE/dx \sim 50 \text{ MeV}/(g/cm^2)$ for high p muons?
 - How will they work in large B-field?

References

- 1st CFHEP Symposium on circular collider physics 23-25 February 2014
 - <u>http://indico.ihep.ac.cn/conferenceDisplay.py?confId=4068</u>
- BSM physics opportunities at 100 TeV, 10-11 February 2014
 - <u>http://indico.cern.ch/event/284800/other-view?view=standard</u>
- Workshop on Physics at a 100 TeV Collider, 23-25 April 2014
 - <u>https://indico.fnal.gov/conferenceDisplay.py?confId=7633</u>
- Large Hadron Collider Physics (LHCP) Conference, 2-7 June 2014
 - <u>https://indico.cern.ch/event/279518/</u>
- Future Circular Collider Study Kickoff Meeting, 12-15 February 2014
 - <u>https://indico.cern.ch/event/282344/</u>
- International Conference on Technology and Instrumentation in Particle Physics
 - <u>http://www.tipp2014.nl/</u>
- XII workshop on Resistive Plate Chamber and Related Detectors
 - <u>http://166.111.32.59/indico/conferenceProgram.py?confld=1</u>
- D. E. Groom, N. V. Mokhov and S. Striganov Muon Stopping Power and Range; Atomic Data and Nuclear Data Tables, Vol. 76, No. 2, July 2001, LBNL-44742
- HADRON SHOWERS IN A LOW-DENSITY FINE-GRAINED FLASH CHAMBER CALORIMETER, W.J. Womersley et al. NIM A267 (1988) 49-68

Additional Slides

General Considerations

- Design Driver is momentum dispersion BL² |_{100 TeV} ~ 7 BL² |_{14 TeV}
 - Obviously increasing B increases mechanical stresses through magnetic pressure ~ $B^2/2\mu_0$ and by a factor of 7 is untenable
 - More practicable is to increase L with modest increase in B
- Solenoidal Configuration
 - First coordinate (bending) ϕ , second θ
 - Advantage of good vertex determination
- Toroidal Configuration
 - First coordinate (bending) θ , second ϕ
 - Advantage of higher bending power at larger $|\eta|$
- Muon Chamber system must determine both first and second coordinate
 - High precision required for first coordinate
 - Second coordinate needed for vector *p* as well as a pattern recognition invariant

beam

Toroidal Design – ATLAS inspired

- 3.5 T in Solenoid, 2 T 10 Tm in dipoles and \approx 1.7 T in toroid
- 55 GJ stored energy (for 16 Tm; 130 Tm²)
- Complicated and non-uniform B-field
 - Will require high instrumentation
 - Lorentz angle corrections if drift chamber technology used

Search for Massive Gauge Bosons

- Search for massive objects will be a major focus with a 100 TeV Collider
 - Assume $\mathcal{L} \sim 1 \text{ ab}^{-1}$ by Rizzo* $\mathcal{L}\sigma B_{I}$

Model	$10 { m TeV}$	$15 { m TeV}$	$20 { m TeV}$	Disc.	Excl.
SSM	2021.	232.6	36.65	23.8	27.3
LRM	1353.	156.1	24.62	22.6	26.1
ψ	573.7	65.93	10.37	20.1	23.6
χ	1372.	159.0	25.18	22.7	26.2
η	626.8	71.82	11.38	20.3	23.8
Ι	1241.	144.4	22.94	22.4	25.7

- Di-electron mass resolution is better but di-muons may be cleaner
- <u>A challenge is to design a muon system</u> with sufficient resolution
 - If $\delta p/p \sim 10\%$ for $p \sim 10$ TeV then $\delta m \sim 2$ TeV for $m \sim 20$ TeV

*Rizzo arXiv:1403.5465v3 [hep-ph] 7 May 2014

Dealing with ΔE_{μ}

- The ΔE_{μ} correction is unimportant in CMS-like detector (central tracker)
- In muon system stand-alone operation the ΔE_{μ} correction is important

Figure 8: The momentum distribution of 1 TeV/c muons after traversing 3 m of iron, as obtained with the MARS14 Monte Carlo code [59]. The comparative rarity of very low final momenta follows from the approach of the cross sections to zero as $\nu \to 0$.

 $\frac{\text{Reality check of b = 15\%}}{\Delta \text{E}=23 \text{ GeV, FWHM = 9 GeV}}$ $\sigma=3.8 \text{ GeV}$ $\sigma/\Delta \text{E}=3.8/23=16.5\%$

Drift Technologies – Barrel Deployment

• ATLAS – Monitored Drift Tubes

A drift-based technology is an efficient way to cover large areas without high channel counts. <u>Resolution degrades in high backgrounds.</u>

High Rate Micromega

Floating Strip Micromegas Principles

Floating Strip Micromegas

challenge: discharges

- charge density $\geq 2 \times 10^6 \text{ e}/0.01 \text{ mm}^2$
- conductive connection
 → potentials equalize
- non-destructive, but dead time
 → efficiency drop

idea: minimize the affected region

- "floating" copper strips:
 - strip can "float" in a discharge
 - individually connected to HV via $22M\Omega$
 - capacitively coupled to readout electronics via pF HV capacitor
 - only two or three strips need to be recharged

 \rightarrow dedicated measurements & detailed simulation

|--|

CMS Gas Electron Multipliers

• Phase II Upgrade – Forward Trigger

Cesare Calabria - ICHEP2014 - "Large-size triple GEM detectors for the CMS forward muon upgrade"

Outline

- Examples of muon systems/physics discovery
 - J/Psi
 - Upsilon
 - W/Z
 - Higgs
- Measurement problem emulate the present LHC detector performance
 - Size of point-like cross section vs. sqrt s
 - Luminosity needed and backgrounds
 - Designer's toolkit
 - Bending
 - MS
 - Rad loss
 - Filtering/punch-through
 - Chamber resolution
- Basic configuration
 - Toroid vs. Solenoid strong central tracker vs. strong stand-alone muon system
 - Comparison of ATLAS vs. CMS
 - How will these configurations scale?
- Triggering & Tracking
 - Gas amplification
 - Strip & pad vs. Pixels (pixel possible?)
 - Costs & channel count
 - Combined function the best example micromega and the ATLAS New Small Wheel project